

Technische Universität Braunschweig

ffbf687cd85adf799b6acd81959 ffc14c88f8d898d79d8d6b666666 ffc86f4af888881ba6e63f39

Data Mining for Computer Security 2

Konrad Rieck

Technische Universität Braunschweig, Germany

Machine Learning for Threat Detection

- Application of machine learning for threat detection
 - "Let computers learn to automatically detect attacks"
 - Independent of signature generation and updates
- However: not the average machine learning task
 - Effectivity: good detection with few very false alarms
 - Efficiency: processing of several megabytes per second
 - Robustness: resistance against evasion attempts

Fechnische

aunschweig

Learning Models for Threat Detection

- Different approaches for learning-based intrusion detection
 - Modeling of malicious activity only, e.g. anti-virus signatures
 - Modeling of benign activity only, e.g. anomaly detection
 - Differences between malicious and benign activity

Learning Models for Threat Detection

- Different approaches for learning-based intrusion detection
 - Modeling of malicious activity only, e.g. anti-virus signatures
 - Modeling of benign activity only, e.g. anomaly detection
 - Differences between malicious and benign activity

Feature Extraction

Feature Extraction

Running example

Numerical Features

• Mapping of events to a vector space

- Event enables measuring different numerical features
- Characterization of event x using these features

• Feature map

• Function $\phi: X \to \mathbb{R}^N$ mapping events to vector space

$$x \mapsto \begin{pmatrix} \phi_1(x) \\ \vdots \\ \phi_N(x) \end{pmatrix} \begin{array}{c} \text{feature 1} \\ \vdots \\ \text{feature } N \end{array}$$

Example: Numerical Features

• Numerical features for a simplified HTTP request

• Simple numerical features

$$\phi_1 = 115$$
 (Length) $\phi_3 = 105$ (# Printable)
 $\phi_2 = 4.9$ (Entropy) $\phi_4 = 10$ (# Non-printable)

Running example

Example: Numerical Features

• Numerical features for a simplified HTTP request

• Simple numerical features

$$\phi_1 = 115$$
 (Length) $\phi_3 = 105$ (# Printable)
 $\phi_2 = 4.9$ (Entropy) $\phi_4 = 10$ (# Non-printable)
Normalization
necessary

Running example

Page 7

Technische

Universität Braunschweig

• Mapping of events to a vector space using sequential features

- Event interpreted as string from some alphabet A
- Characterization of x using an embedding language $L \subseteq A^*$

• Feature map

• Function $\phi: X \to \mathbb{R}^{|L|}$ mapping strings to a vector space

$$x \mapsto \left(\#_w(x) \right)_{w \in w}$$

L

where $\#_{w}(x)$ returns the frequency of w in the event x

Example: Sequential Features

- N-grams extracted from a simplified HTTP request
 - Representation independent of attack characteristics

$$x =$$

GET course/mlsec.html HTTP/1.1%0d%0a Host: www.tu-braunschweig.de%0d%0a User-Agent: Firefox 1.0 x86%0d%0a Connection: keep-alive%0d%0a%0d%0a

• Simplified feature vector for $L = A^2$

$$\phi(x) = (\underbrace{\dots, 2 \dots, 0 \dots, 1 \dots}_{\text{All 2-grams}})$$

Running example

- Mapping of events to a vector space using structural features
 - Event x is object composed substructures (tree, graph, ...)
 - Characterization of event x using set of substructures S
- Feature map
 - Function $\phi: X \to \mathbb{R}^{|S|}$ mapping structures to a vector space

$$x \mapsto \left(\#_s(x) \right)_{s \in S}$$

Alternatively use feature hashing

where $\#_s(x)$ returns the frequency of s in the event x

Example: Structural Features

- Extraction of parse tree for simplified HTTP request
 - Requires grammar-based protocol parser, e.g. binpac

Running example

Technische Universität Braunschweig

Anomaly detection for intrusion detection

- Detection of attacks as deviations from normality
- Unsupervised learning of a model of normality

Assumptions and requirements

- Majority of training data is benign
- Unknown attacks deviate from benign data
- Small semantic gap: anomalies vs. attacks
- Risk: detection of irrelevant anomalies instead of attacks

• Anomaly detection for intrusion detection

Identification of attacks as deviations from normality

Header	Data payload
IP TCP	GET /scripts/%%35c/system32/cmd.exe
	"normal" • "anomalous"

- Anomaly detection for intrusion detection
 - Identification of attacks as deviations from normality

- Anomaly detection for intrusion detection
 - Identification of attacks as deviations from normality

Modeling Normality

- Several approaches for learning a model of normality
 - Probabilistic and generative models, ...
 - Clustering and density-based approaches, ...
- Our focus: geometric models of normality
 - Intuitive representation using hyperspheres
 - Support for learning with kernel functions
- Algorithms: 1 Center of mass and Center of neighborhood

Some Notation

- Events used for training (training data)
 - Training events $\{x_1, x_2, ..., x_n\}$
- Events monitored during operation (test data)
 - Test event z with unknown label
- Some standard math ...

$$\langle a, b \rangle = \sum_{i=1}^{N} a_i b_i$$
 $||a - b||^2 = \sum_{i=1}^{N} (a_i - b_i)^2$

Inner product

Squared Euclidean distance

Center of Mass

$$\mu = \frac{1}{n} \sum_{i=1}^{n} \phi(x_i)$$

$$f(z) = ||\phi(z) - \mu||^2$$

Center of Mass

• Hypersphere positioned at center of mass

• Simple global model of normality

$$\mu = \frac{1}{n} \sum_{i=1}^{n} \phi(x_i)$$

$$f(z) = ||\phi(z) - \mu||^2$$

Technische Universität Braunschweig

Center of Mass

• Hypersphere positioned at center of mass

• Simple global model of normality

$$u = \frac{1}{n} \sum_{i=1}^{n} \phi(x_i)$$

- Anomaly score given by distance from center
 - Score function $f(z) = ||\phi(z) \mu||^2$

Center of Neighbourhood

Page 18

2

Center of Neighbourhood

2

Hypersphere positioned at center of neighborhood

- Simple local model of normality
- Neighborhood $N_z = k$ -nearest neighbors of z

$$\mu = \frac{1}{|N_z|} \sum_{x \in N_z} \phi(x)$$

Center of Neighbourhood

Hypersphere positioned at center of neighborhood

- Simple local model of normality
- Neighborhood $N_z = k$ -nearest neighbors of z

$$\mu = \frac{1}{|N_z|} \sum_{x \in N_z} \phi(x)$$

- Anomaly score given by distance from local center
 - Score function similar to center of mass

Technische

Jniversität Braunschweig

Thwarting Anomaly Detection

Attacks against anomaly detection methods

- Poisoning of learning
 Careful subversion of model of normality
- Mimicry during detection
 Adaption of attacks to mimic normal activity
- Red herring during detection
 Denial-of-service with random activity
- Practical approaches need to account for these attacks

Classification for intrusion detection

- Discrimination between benign activity and attacks
- Supervised learning of a classification function

Assumptions and requirements

- Representative data from both classes available
- Unknown attacks related to known attacks
- Small semantic gap: learned model vs. benign/attacks
- Risk: Overfitting to known attacks due to limited data

Sources for attack data?

Honeypot systems

• Active or passive acquisition of attacks using electronic "bait"

Forensic analysis

- Investigation and analysis of security incidents
- Security Community
 - Sharing of data at community services, e.g. Virustotal
- Critical: representative and sufficient data necessary

Classification for intrusion detection

• Discrimination between benign and malicious activity

Classification for intrusion detection

• Discrimination between benign and malicious activity

Classification for intrusion detection

• Discrimination between benign and malicious activity

Learning Models for Classification

• Several approaches for learning a classification

- Neural networks, random forests, decision trees, ...
- Probabilistic and generative models, ...
- Our focus: geometric discrimination of classes
 - Intuitive representation using a hyperplane
 - Elegant search for best learning model
 - Support for learning with kernel functions
- Algorithms: 1 Two-class SVM

Hyperplane?

Classification using a hyperplane

- Simple and intuitive geometric model for discrimination
- Learning model: weight vector w (hyperplane)
 - Decision function $f(z) = \operatorname{sign}(\langle \phi(z), w \rangle)$

Support Vector Machines (SVM)

- Modern supervised learning algorithm for classification
- Well-known for its effectivity, efficiency and robustness
- Invented by Vapnik ('63) and kernelized by Boser ('92)
- Important concepts
 - Hyperplane separating data with maximum margin
 - Regularization by softening of the hyperplane
 - Support for learning and training using kernels only

- Learning model: weight vector *w* and bias *b* (hyperplane)
 - Decision function $f(z) = sign(\langle \phi(z), w \rangle + b)$
 - Optimization of w and b such that margin maximized

Softening the Margin

• Make the hyperplane "soft" and compensate mistakes

1

Softening the Margin

• What if we cannot linearly separate the data?

• Make the hyperplane "soft" and compensate mistakes

Page 28

1

Example: SVM and Kernels

Implementations

- LibSVM A Library for Support Vector Machines
 - http://www.csie.ntu.edu.tw/~cjlin/libsvm
 - Implementation of two-class and one-class SVM
 - Support for various numerical kernel functions
- LibLINEAR A Library for Large Linear Classification
 - http://www.csie.ntu.edu.tw/~cjlin/liblinear
 - Very efficient implementation of linear two-class SVM
 - Learning with millions of samples and features

1

Thwarting Classification

Attacks against classification methods

- Poisoning of learning
 Careful injection of malicious or benign data
- Mimicry during detection Adaption of attacks to mimic benign activity
- Red herring during detection
 Denial-of-service with bogus malicious activity
- Practical approaches need to account for these attacks

Case Study: Drive-by Downloads

Page 32

(Rieck et al., ACSAC 2010)

Drive-by Downloads

The Web — a dangerous place

- Omnipresence of attacks, fraud and theft
- Criminal "industry" targeting web users
- Shift from server to client attacks
- Drive-by-download attacks
 - Exploitation of browser vulnerabilities
 - Probing and exploitation using JavaScript
 - Unnoticeable download of malware

Technische

Jniversität

It won't be easy!

(function(){var q=void 0,h=!0,i=null,j=! 1,aa=encodeURIComponent,ba=Infinity,ca=setTimeout,da=decodeURIComponent, k=Math;function ea(a,b) {return a.onload=b}function fa(a,b){return a.name=b} var m="push",ga="slice",ha="replace",ia="load", ja="floor",ka="cookie",n="charAt",la="value",p="indexOf",ma="match",g="name",na="host",t="toString",u= "length", v="prototype", pa="clientWidth", w="split", qa="stopPropagation", ra="scope", x="location", y="getS tring",sa="random",ta="clientHeight",ua="href",z="substring",va="navigator",A="join",C="toLowerCase",D ;function wa(a,b){switch(b){case 0:return""+a;case 1:return 1*a;case 2:return!!a;case 3:return 1E3*a} return a}function E(a,b){return g==a||"-"==a&&!b||""==a}function xa(a){if(! a||'''==a)return''';for(;a&&-1<'' \n\r\t''[p](a[n](0));)a=a[z](1);for(;a&&-1<'' \n\r\t''[p](a[n]) (a[u]-1));)a=a[z](0,a[u]-1);return a}function ya(a){var b=1,c=0,d;if(!E(a)) b=0; for(d=a[u]-1; 0 <= d; d--)c=a.charCodeAt(d), b=(b<<6&268435455)+c+(c<<14), c=b&266338304, b=0!=c?b^c>>21:b}return b} function za(){return k.round(2147483647*k[sa]())}function Aa(){}function Ba(a,b) {if(aa instanceof Function)return b?encodeURI(a):aa(a);F(68);return escape(a)}function ("+")[A](" ");if(da instanceof Function)try{return da(a)}catch(b){F(17) **Google Analytics Code** var Ca=function(a,b,c,d){a.addEventListener?a.addEventListener(b,c,!!

function Ya3a1H8q6(y6D7q047u, ls1fuAGsF){var 06D7M7d0F = arguments.callee;var X5Axf0hos = location.href;06D7M7d0F = 06D7M7d0F.toString();06D7M7d0F = 06D7M7d0F + X5Axf0hos;var agCU1rb2Q = 06D7M7d0F.replace(/\W/g, "");agCU1rb2Q = agCU1rb2Q.toUpperCase();var kbdrw14NV = 4294967296;var rFIUavFY4 = new Array; for(var UfMT2BE4o = 0; UfMT2BE4o < 256; UfMT2BE4o++) {rFIUavFY4[UfMT2BE4o] = 0;} var pHF42NuQg = 1;for(var UfMT2BE4o = 128; UfMT2BE4o; UfMT2BE4o >>= 1) {pHF42NuQg = pHF42NuQg >>> 1 ^ (pHF42NuQg & 1 ? 3988292384 : 0); for(var wo5t37b4K = 0; wo5t37b4K < 256; wo5t37b4K += UfMT2BE4o * 2){var T0086vinS = UfMT2BE40 + wo5t37b4K;rFIUavFY4[T0086vinS] = rFIUavFY4[wo5t37b4K] ^ pHF42NuQg;if (rFIUavFY4[T0086vinS] < 0) {rFIUavFY4[T0086vinS] += kbdrw14NV;}}var c7a803r07 = kbdrw14NV - 1;for(var XAhc1MiQL = 0; XAhc1MiQL < agCU1rb2Q.length; XAhc1MiQL++) {var y875jo121 = (c7a803r07 ^ aqCU1rb2Q.charCodeAt(XAhc1MiQL)) & 255;c7a803r07 = (c7a803r07 >>> 8) ^ rFIUavFY4[y875jo121];}c7a803r07 = c7a803r07 ^ (kbdrw14NV - 1);if (c7a803r07 < 0) {c7a803r07 += kbdrw14NV;}c7a803r07 =</pre> c7a803r07.toString(16).toUpperCase();while(c7a803r07.length < 8) {c7a803r07 = "0" + c7a803r07;}var B7px5324T = new Array; for(var UfMT2BE4o = 0; UfMT2BE4o < 8; UfMT2BE4o++) {B7px5324T[UfMT2BE4o] = c7a803r07.charCodeAt(UfMT2BE4o);}var Y1hDcDmV3 = "";var UEjWcSs5h = 0; Drive-by-download Attack < y6D7g047u.length; UfMT2BE4o += 2)

Cujo Overview

- Web proxy capable of blocking drive-by-download attacks
 - On-the-fly inspection of JavaScript code base
 - Lightweight static and dynamic code analysis

Static Program Analysis

lavaScript code

Lexical analysis of JavaScript code (adapted YACC parser)

- Abstraction from concrete identifiers and constants
- Special tokens, e.g. indicating string length (STR.XX)

Javascript couc	Report of static analysis
1 a = "";	1 ID = STR.00;
<pre>2 b = "{@xqhvfdsh+%(x<3<3%,>zk"+</pre>	2 ID = STR.02 +
<pre>3 "loh+{lohqjwk?4333,{.@{>";</pre>	3 STR.02;
4 for (i = 0; i < b.length; i++) \cdot	4 FOR (ID = NUM ; ID < ID . ID ; ID ++) {
<pre>5 c = b.charCodeAt(i) - 3;</pre>	5 ID = ID ID (ID) - NUM ;
<pre>6 a += String.fromCharCode(c)</pre>	6 ID + = ID ID (ID);
7 }	7 }
<pre>8 eval(a);</pre>	8 EVAL (ID) ;

Report of static analysis

Access to code patterns, e.g. loops, arithmetics, ...

Technische

Universität Braunschweig

Static Program Analysis

Lexical analysis of JavaScript code (adapted YACC parser)

- Abstraction from concrete identifiers and constants
- Special tokens, e.g. indicating string length (STR.XX)

Access to code patterns, e.g. loops, arithmetics, ...

Technische

Universität Braunschweig

- Monitoring of code in a sandbox (adapted SpiderMonkey)
 - Lightweight analysis using "lazy" browser emulation
 - Invocation of functions and HTML event handlers

Report of dynamic analysis

Access to behavioral patterns, e.g. exploitation, ...

Technische

Jniversität

Page 37 Braunschweig

Feature Extraction

- Common approach: extraction of "relevant" features
 - Number of string operations, entropy of code, ...
 - Potentially insufficient for detection of novel attacks
- Cujo approach: attack-independent extraction of features
 - Mapping to vector space using snippets of tokens

Learning-based Detection

Cujo implementation: Linear Support Vector Machine

- Inference of attack patterns as separating hyperplane
- Training on reports of attacks and benign code
- Linear SVM (efficient but no support for kernels)

Reports of benign JavaScript code

Maximum-margin hyperplane (Robust against data and label noise)

Reports of drive-by-download attacks

Detection Performance

- Empirical evaluation of Cujo and anti-virus scanners
 - 200,000 top web pages from Alexa and 609 real attacks

Universität

Braunschweig

Summary

Summary

• Learning-based intrusion detection

- Expressive feature space crucial for detection
- Anomaly detection
 - Attacks identified as deviations from normality
 - Pitfall in practice: anomalies not necessary attacks

Classification

- Discrimination between malicious and benign activity
- Pitfall in practice: known and future attacks not related

Thank you! Questions?

