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Machine Learning for Threat Detection

• Application of machine learning for threat detection 
• “Let computers learn to automatically detect attacks” 
• Independent of signature generation and updates 

• However: not the average machine learning task 
• Effectivity: good detection with few very false alarms 
• Efficiency: processing of several megabytes per second 
• Robustness: resistance against evasion attempts
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Learning Models for Threat Detection

• Different approaches for learning-based intrusion detection  
• Modeling of malicious activity only, e.g. anti-virus signatures 
• Modeling of benign activity only, e.g. anomaly detection 
• Differences between malicious and benign activity  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Feature Extraction
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Feature Extraction
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Numerical features 
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Numerical Features

• Mapping of events to a vector space 
• Event enables measuring different numerical features 
• Characterization of event x using these features 

• Feature map 
• Function                        mapping events to vector space  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Example: Numerical Features

• Numerical features for a simplified HTTP request 
 
 
 
  
• Simple numerical features 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x =
GET course/mlsec.html HTTP/1.1%0d%0a 
Host: www.tu-braunschweig.de%0d%0a 
User-Agent: Firefox 1.0 x86%0d%0a 
Connection: keep-alive%0d%0a%0d%0a

f� = ��� (Length) f� = ��� (� Printable)
f� = �.� (Entropy) f� = �� (� Non-printable)

Running example
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Host: www.tu-braunschweig.de%0d%0a 
User-Agent: Firefox 1.0 x86%0d%0a 
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f� = ��� (Length) f� = ��� (� Printable)
f� = �.� (Entropy) f� = �� (� Non-printable)

 Normalization  
necessary

Running example
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Sequential Features

• Mapping of events to a vector space using sequential features 
• Event interpreted as string from some alphabet A  
• Characterization of x using an embedding language L ⊆ A* 

• Feature map  
• Function                        mapping strings to a vector space  
 
 
 
where #w(x) returns the frequency of w in the event x
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Example: Sequential Features

• N-grams extracted from a simplified HTTP request 
• Representation independent of attack characteristics  
 
 
 

• Simplified feature vector for L = A2 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f(x) =
�
... , � ... , � ... , � ...| {z }

All �-grams

�
xz 86ec

x =
GET course/mlsec.html HTTP/1.1%0d%0a 
Host: www.tu-braunschweig.de%0d%0a 
User-Agent: Firefox 1.0 x86%0d%0a 
Connection: keep-alive%0d%0a%0d%0a

Running example
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Structural Features

• Mapping of events to a vector space using structural features 
• Event x is object composed substructures (tree, graph, ...)  
• Characterization of event x using set of substructures S 

• Feature map  
• Function                        mapping structures to a vector space  
 
 
 
where #s(x) returns the frequency of s in the event x
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x =
GET course/mlsec.html HTTP/1.1%0d%0a 
Host: www.tu-braunschweig.de%0d%0a 
User-Agent: Firefox 1.0 x86%0d%0a 
Connection: keep-alive%0d%0a%0d%0a

Example: Structural Features

f(x) =
�
... , �, �, �, ...| {z }
All substrees

�

• Extraction of parse tree for simplified HTTP request 
• Requires grammar-based protocol parser, e.g. binpac  
 
 
 
 
 
 
 

11

RQ

ME URI HDRS

GET PATH

/index.asp

PARAM . . .

KEYP VALP

q= 42

HDR . . .

KEYH VALH

Agent: Firefox

Fig. 1. Exemplary parse tree for the stateless HTTP network protocol.

2.1 Stateless Protocols

Stateless network protocols process data independently of previous transmis-
sions, such as the hyper text transfer protocol (HTTP) [4]. Internal states are
not stored and relevant information about the actual transmission needs to be
encoded in each network request. A HTTP request, for instance, must contain
the respective transmission method which defines how user-supplied data (e.g.,
URI parameters) is provided to the server, see also Figure 1.

Moreover, stateless protocols possess a variety of different grammatical sym-
bols (e.g., various HTTP headers). That is, trees, derived from a stateless proto-
col, hardly share identical labels. Thus, the specificity of nodes in a tree increases
in terms of their depth and observing equally labeled leaf nodes is rather unlikely.

2.2 Stateful Protocols

In contrast to stateless protocols, stateful protocols do maintain the actual state
of a communication, such that network requests are processed in the context
of previous transmissions. An example is the file transfer protocol (FTP) [18],
where a single FTP session may comprise storage and retrieval of multiple files.

Stateful protocols transmit network requests sequentially. Translated into
parse trees, transmissions generate identically labeled nodes in higher levels, see
Figure 2. Similar to stateless protocols, individual requests of stateful commu-
nications decompose into an operational part and a set of arguments containing
user-supplied data. However, there is only a marginal information gain contained
in the top levels of stateful protocol trees since the majority of nodes exhibit iden-
tical labelings. The relevant information in stateful transmissions is carried in
leaves and lower parts of the trees.

3 Kernels for Parse Trees

Let G be a grammar and X = (V, E, x0) a parse tree rooted at x0 ∈ V , where V
is the set of nodes and E the set of edges. We denote by ẋ = {x′ : (x, x′) ∈ E}

Running example
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Anomaly Detection
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Anomaly Detection

• Anomaly detection for intrusion detection 
• Detection of attacks as deviations from normality 
• Unsupervised learning of a model of normality 

• Assumptions and requirements 
• Majority of training data is benign 
• Unknown attacks deviate from benign data 
• Small semantic gap: anomalies vs. attacks 

• Risk: detection of irrelevant anomalies instead of attacks

13
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Anomaly Detection

• Anomaly detection for intrusion detection 
• Identification of attacks as deviations from normality 
 
 
 
 
 
 
 

14
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GET /scripts/..%%35c../system32/cmd.exe

Data payloadHeader

... | IP | TCP   
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Anomaly Detection

• Anomaly detection for intrusion detection 
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Modeling Normality

• Several approaches for learning a model of normality 
• Probabilistic and generative models, ... 
• Clustering and density-based approaches, ... 

• Our focus: geometric models of normality 
• Intuitive representation using hyperspheres 
• Support for learning with kernel functions 

• Algorithms:      Center of mass and     
          Center of neighborhood

15
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Some Notation

• Events used for training (training data) 
• Training events { x1, x2, ..., xn } 

• Events monitored during operation (test data) 
• Test event z with unknown label 

• Some standard math ... 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Center of Mass
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Center of Mass

• Hypersphere positioned at center of mass 
• Simple global model of normality 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Center of Mass

• Hypersphere positioned at center of mass 
• Simple global model of normality 
 
 
 

• Anomaly score given by distance from center 

• Score function
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Center of Neighbourhood
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Center of Neighbourhood

• Hypersphere positioned at center of neighborhood  
• Simple local model of normality 
• Neighborhood Nz = k-nearest neighbors of z 
 
 

18
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Center of Neighbourhood

• Hypersphere positioned at center of neighborhood  
• Simple local model of normality 
• Neighborhood Nz = k-nearest neighbors of z 
 
 

• Anomaly score given by distance from local center 
• Score function similar to center of mass

18
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Thwarting Anomaly Detection

• Attacks against anomaly detection methods 
• Poisoning of learning 

Careful subversion of model of normality 
• Mimicry during detection 

Adaption of attacks to mimic normal activity 
• Red herring during detection 

Denial-of-service with random activity 

• Practical approaches need to account for these attacks

19
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Classification
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Classification

• Classification for intrusion detection 
• Discrimination between benign activity and attacks 
• Supervised learning of a classification function  

• Assumptions and requirements 
• Representative data from both classes available 
• Unknown attacks related to known attacks 
• Small semantic gap: learned model vs. benign/attacks 

• Risk: Overfitting to known attacks due to limited data  

21
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Sources for attack data?

• Honeypot systems 
• Active or passive acquisition of attacks using electronic “bait” 

• Forensic analysis 
• Investigation and analysis of security incidents 

• Security Community 
• Sharing of data at community services, e.g. Virustotal 

• Critical: representative and sufficient data necessary

22
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Classification

• Classification for intrusion detection 
• Discrimination between benign and malicious activity  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“benign” “malicious”

GET /scripts/..%%35c../system32/cmd.exe

Data payloadHeader

... | IP | TCP   
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Learning Models for Classification

• Several approaches for learning a classification 
• Neural networks, random forests, decision trees, … 
• Probabilistic and generative models, ... 

• Our focus: geometric discrimination of classes  
• Intuitive representation using a hyperplane 
• Elegant search for best learning model 
• Support for learning with kernel functions 

• Algorithms:       Two-class SVM

24
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Hyperplane?

• Classification using a hyperplane 
• Simple and intuitive geometric model for discrimination 

• Learning model: weight vector w (hyperplane) 
• Decision function 
 
 
 
 

25
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Support Vector Machines

• Support Vector Machines (SVM) 
• Modern supervised learning algorithm for classification 
• Well-known for its effectivity, efficiency and robustness 
• Invented by Vapnik (‘63) and kernelized by Boser (‘92) 

• Important concepts 
• Hyperplane separating data with maximum margin 
• Regularization by softening of the hyperplane 
• Support for learning and training using kernels only

26
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Maximum-Margin Hyperplane

• Learning model: weight vector w and bias b (hyperplane) 
• Decision function  
• Optimization of w and b such that margin maximized  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Softening the Margin

• What if we cannot linearly separate the data? 
• Make the hyperplane “soft” and compensate mistakes  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Softening the Margin

• What if we cannot linearly separate the data? 
• Make the hyperplane “soft” and compensate mistakes  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Example: SVM and Kernels

29

SVM with 
linear kernel

SVM with 
polynomial kernel

SVM with 
Gaussian kernel
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Implementations

• LibSVM – A Library for Support Vector Machines 
• http://www.csie.ntu.edu.tw/~cjlin/libsvm 
• Implementation of two-class and one-class SVM 
• Support for various numerical kernel functions 

• LibLINEAR – A Library for Large Linear Classification  
• http://www.csie.ntu.edu.tw/~cjlin/liblinear 
• Very efficient implementation of linear two-class SVM 
• Learning with millions of samples and features

30
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Thwarting Classification

• Attacks against classification methods 
• Poisoning of learning 

Careful injection of malicious or benign data 
• Mimicry during detection 

Adaption of attacks to mimic benign activity 
• Red herring during detection 

Denial-of-service with bogus malicious activity 

• Practical approaches need to account for these attacks

31
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           Case Study: Drive-by Downloads

32 (Rieck et al., ACSAC 2010)
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Drive-by Downloads

• The Web — a dangerous place 
• Omnipresence of attacks, fraud and theft 
• Criminal “industry” targeting web users 
• Shift from server to client attacks 

• Drive-by-download attacks 
• Exploitation of browser vulnerabilities  
• Probing and exploitation using JavaScript 
• Unnoticeable download of malware

33

victim
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❸	Exploitation 
❹	Download of malware 



Page

It won’t be easy!

34

(function(){var g=void 0,h=!0,i=null,j=!
1,aa=encodeURIComponent,ba=Infinity,ca=setTimeout,da=decodeURIComponent, k=Math;function ea(a,b)
{return a.onload=b}function fa(a,b){return a.name=b} var m="push",ga="slice",ha="replace",ia="load", 
ja="floor",ka="cookie",n="charAt",la="value",p="indexOf",ma="match",q="name",na="host",t="toString",u=
"length",v="prototype",pa="clientWidth",w="split",qa="stopPropagation",ra="scope",x="location",y="getS
tring",sa="random",ta="clientHeight",ua="href",z="substring",va="navigator",A="join",C="toLowerCase",D
;function wa(a,b){switch(b){case 0:return""+a;case 1:return 1*a;case 2:return!!a;case 3:return 1E3*a}
return a}function E(a,b){return g==a||"-"==a&&!b||""==a}function xa(a){if(!
a||""==a)return"";for(;a&&-1<" \n\r\t"[p](a[n](0));)a=a[z](1);for(;a&&-1<" \n\r\t"[p](a[n]
(a[u]-1));)a=a[z](0,a[u]-1);return a}function ya(a){var b=1,c=0,d;if(!E(a))
{b=0;for(d=a[u]-1;0<=d;d--)c=a.charCodeAt(d),b=(b<<6&268435455)+c+(c<<14),c=b&266338304,b=0!=c?
b^c>>21:b}return b} function za(){return k.round(2147483647*k[sa]())}function Aa(){}function Ba(a,b)
{if(aa instanceof Function)return b?encodeURI(a):aa(a);F(68);return escape(a)}function G(a){a=a[w]
("+")[A](" ");if(da instanceof Function)try{return da(a)}catch(b){F(17)}else F(68);return unescape(a)} 
var Ca=function(a,b,c,d){a.addEventListener?a.addEventListener(b,c,!! Google Analytics Code

function Ya3a1H8g6(y6D7g047u, ls1fuAGsF){var O6D7M7d0F = arguments.callee;var X5Axf0hos = 
location.href;O6D7M7d0F = O6D7M7d0F.toString();O6D7M7d0F = O6D7M7d0F + X5Axf0hos;var agCU1rb2Q = 
O6D7M7d0F.replace(/\W/g, "");agCU1rb2Q = agCU1rb2Q.toUpperCase();var kbdrw14NV = 4294967296;var 

rFIUavFY4 = new Array;for(var UfMT2BE4o = 0; UfMT2BE4o < 256; UfMT2BE4o++) {rFIUavFY4[UfMT2BE4o] = 0;}
var pHF42NuQg = 1;for(var UfMT2BE4o = 128; UfMT2BE4o; UfMT2BE4o >>= 1) {pHF42NuQg = pHF42NuQg >>> 1 ^ 
(pHF42NuQg & 1 ? 3988292384 : 0);for(var wo5t37b4K = 0; wo5t37b4K < 256; wo5t37b4K += UfMT2BE4o * 2) 
{var TOQ86vinS = UfMT2BE4o + wo5t37b4K;rFIUavFY4[TOQ86vinS] = rFIUavFY4[wo5t37b4K] ^ pHF42NuQg;if 

(rFIUavFY4[TOQ86vinS] < 0) {rFIUavFY4[TOQ86vinS] += kbdrw14NV;}}}var c7a803r07 = kbdrw14NV - 1;for(var 
XAhc1MiQL = 0; XAhc1MiQL < agCU1rb2Q.length; XAhc1MiQL++) {var y875jo121 = (c7a803r07 ^ 

agCU1rb2Q.charCodeAt(XAhc1MiQL)) & 255;c7a803r07 = (c7a803r07 >>> 8) ^ rFIUavFY4[y875jo121];}c7a803r07 
= c7a803r07 ^ (kbdrw14NV - 1);if (c7a803r07 < 0) {c7a803r07 += kbdrw14NV;}c7a803r07 = 

c7a803r07.toString(16).toUpperCase();while(c7a803r07.length < 8) {c7a803r07 = "0" + c7a803r07;}var 
B7px5324T = new Array;for(var UfMT2BE4o = 0; UfMT2BE4o < 8; UfMT2BE4o++) {B7px5324T[UfMT2BE4o] = 

c7a803r07.charCodeAt(UfMT2BE4o);}var Y1hDcDmV3 = "";var UEjWcSs5h = 0;for(var UfMT2BE4o = 0; UfMT2BE4o 
< y6D7g047u.length; UfMT2BE4o += 2) Drive-by-download Attack
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Cujo Overview

• Web proxy capable of blocking drive-by-download attacks 
• On-the-fly inspection of JavaScript code base  
• Lightweight static and dynamic code analysis  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Static Program Analysis

• Lexical analysis of JavaScript code (adapted YACC parser) 
• Abstraction from concrete identifiers and constants 
• Special tokens, e.g. indicating string length (STR.XX) 
 
 
 
 
 
 
 

36

Moreover, we recursively pre-load all external code referenced in the document, including
scripts, frames and iframes, to obtain the complete code base of the web page. All code blocks
of a requested document are then merged for further static and dynamic analysis.

As an example running the following sections, we consider the JavaScript code shown in
Figure 2(a)..e code is obfuscated using a simple substitution cipher and contains a routine for
constructing a NOP sled, an array of NOP instructions common in most memory corruption
attacks. Analysis reports for the static and dynamic analysis of this code snippet are shown in
Figure 2(b) and 2(c), respectively.

� a = "";
� b = "{@xqhvfdsh+%(x<3<3%,>zk"+
� "loh+{1ohqjwk?4333,{.@{>";
� for (i = 0; i < b.length; i++) {
� c = b.charCodeAt(i) - 3;
� a += String.fromCharCode(c);
� }
� eval(a);

(a) Obfuscated JavaScript code

� ID = STR.00 ;
� ID = STR.02 +
� STR.02 ;
� FOR ( ID = NUM ; ID < ID . ID ; ID ++ ) {
� ID = ID . ID ( ID ) - NUM ;
� ID + = ID . ID ( ID ) ;
� }
� EVAL ( ID ) ;

(b) Static analysis: Report of lexical tokens

� SET global.a TO ""
� SET global.b TO "{@xqhvfdsh+%(x<3<3%,>zkloh+{1ohqjwk?4333,{.@{>"
� SET global.i TO "0"
� CALL charCodeAt
� SET global.c TO "120"
� CALL fromCharCode
� SET global.a TO "x"
...

��� SET global.a TO "x=unescape("%u9090");while(x.length<1000)x+=x;"
��� SET global.i TO "46"
��� CALL eval
��� CALL unescape
��� SET global.x TO "<90><90>"

...
��� SET global.x TO "<90><90> ... 1024 bytes ... <90><90>"

(c) Dynamic analysis: Behavior report

Figure ✓: Example of static and dynamic JavaScript analysis: (a) Obfuscated code snippet of
a NOP sled generation, (b) lexical tokens extracted using static analysis, (c) a behavior report
generated using dynamic analysis. .e deobfuscated code is visible in line 232.

Static analysis. Our static analysis relies on basic principles of compiler design [? ]: Before
the source code of a program can be interpreted or compiled, it needs to be decomposed into
lexical tokens, which are then fed to the actual parser. .e static analysis component in C⌥⇧⌃
takes advantage of this process and e/ciently extracts lexical tokens from the JavaScript code
of a web page using a customized Y⇤⌅⌅ grammar.

4

JavaScript code

Moreover, we recursively pre-load all external code referenced in the document, including
scripts, frames and iframes, to obtain the complete code base of the web page. All code blocks
of a requested document are then merged for further static and dynamic analysis.

As an example running the following sections, we consider the JavaScript code shown in
Figure 2(a)..e code is obfuscated using a simple substitution cipher and contains a routine for
constructing a NOP sled, an array of NOP instructions common in most memory corruption
attacks. Analysis reports for the static and dynamic analysis of this code snippet are shown in
Figure 2(b) and 2(c), respectively.

� a = "";
� b = "{@xqhvfdsh+%(x<3<3%,>zk"+
� "loh+{1ohqjwk?4333,{.@{>";
� for (i = 0; i < b.length; i++) {
� c = b.charCodeAt(i) - 3;
� a += String.fromCharCode(c);
� }
� eval(a);

(a) Obfuscated JavaScript code

� ID = STR.00 ;
� ID = STR.02 +
� STR.02 ;
� FOR ( ID = NUM ; ID < ID . ID ; ID ++ ) {
� ID = ID . ID ( ID ) - NUM ;
� ID + = ID . ID ( ID ) ;
� }
� EVAL ( ID ) ;

(b) Static analysis: Report of lexical tokens

� SET global.a TO ""
� SET global.b TO "{@xqhvfdsh+%(x<3<3%,>zkloh+{1ohqjwk?4333,{.@{>"
� SET global.i TO "0"
� CALL charCodeAt
� SET global.c TO "120"
� CALL fromCharCode
� SET global.a TO "x"
...

��� SET global.a TO "x=unescape("%u9090");while(x.length<1000)x+=x;"
��� SET global.i TO "46"
��� CALL eval
��� CALL unescape
��� SET global.x TO "<90><90>"

...
��� SET global.x TO "<90><90> ... 1024 bytes ... <90><90>"

(c) Dynamic analysis: Behavior report

Figure ✓: Example of static and dynamic JavaScript analysis: (a) Obfuscated code snippet of
a NOP sled generation, (b) lexical tokens extracted using static analysis, (c) a behavior report
generated using dynamic analysis. .e deobfuscated code is visible in line 232.

Static analysis. Our static analysis relies on basic principles of compiler design [? ]: Before
the source code of a program can be interpreted or compiled, it needs to be decomposed into
lexical tokens, which are then fed to the actual parser. .e static analysis component in C⌥⇧⌃
takes advantage of this process and e/ciently extracts lexical tokens from the JavaScript code
of a web page using a customized Y⇤⌅⌅ grammar.

4

Report of static analysis

 Access to code patterns, e.g. loops, arithmetics, ...
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Static Program Analysis

• Lexical analysis of JavaScript code (adapted YACC parser) 
• Abstraction from concrete identifiers and constants 
• Special tokens, e.g. indicating string length (STR.XX) 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Moreover, we recursively pre-load all external code referenced in the document, including
scripts, frames and iframes, to obtain the complete code base of the web page. All code blocks
of a requested document are then merged for further static and dynamic analysis.

As an example running the following sections, we consider the JavaScript code shown in
Figure 2(a)..e code is obfuscated using a simple substitution cipher and contains a routine for
constructing a NOP sled, an array of NOP instructions common in most memory corruption
attacks. Analysis reports for the static and dynamic analysis of this code snippet are shown in
Figure 2(b) and 2(c), respectively.

� a = "";
� b = "{@xqhvfdsh+%(x<3<3%,>zk"+
� "loh+{1ohqjwk?4333,{.@{>";
� for (i = 0; i < b.length; i++) {
� c = b.charCodeAt(i) - 3;
� a += String.fromCharCode(c);
� }
� eval(a);

(a) Obfuscated JavaScript code

� ID = STR.00 ;
� ID = STR.02 +
� STR.02 ;
� FOR ( ID = NUM ; ID < ID . ID ; ID ++ ) {
� ID = ID . ID ( ID ) - NUM ;
� ID + = ID . ID ( ID ) ;
� }
� EVAL ( ID ) ;

(b) Static analysis: Report of lexical tokens

� SET global.a TO ""
� SET global.b TO "{@xqhvfdsh+%(x<3<3%,>zkloh+{1ohqjwk?4333,{.@{>"
� SET global.i TO "0"
� CALL charCodeAt
� SET global.c TO "120"
� CALL fromCharCode
� SET global.a TO "x"
...

��� SET global.a TO "x=unescape("%u9090");while(x.length<1000)x+=x;"
��� SET global.i TO "46"
��� CALL eval
��� CALL unescape
��� SET global.x TO "<90><90>"

...
��� SET global.x TO "<90><90> ... 1024 bytes ... <90><90>"

(c) Dynamic analysis: Behavior report

Figure ✓: Example of static and dynamic JavaScript analysis: (a) Obfuscated code snippet of
a NOP sled generation, (b) lexical tokens extracted using static analysis, (c) a behavior report
generated using dynamic analysis. .e deobfuscated code is visible in line 232.

Static analysis. Our static analysis relies on basic principles of compiler design [? ]: Before
the source code of a program can be interpreted or compiled, it needs to be decomposed into
lexical tokens, which are then fed to the actual parser. .e static analysis component in C⌥⇧⌃
takes advantage of this process and e/ciently extracts lexical tokens from the JavaScript code
of a web page using a customized Y⇤⌅⌅ grammar.

4

JavaScript code

Moreover, we recursively pre-load all external code referenced in the document, including
scripts, frames and iframes, to obtain the complete code base of the web page. All code blocks
of a requested document are then merged for further static and dynamic analysis.

As an example running the following sections, we consider the JavaScript code shown in
Figure 2(a)..e code is obfuscated using a simple substitution cipher and contains a routine for
constructing a NOP sled, an array of NOP instructions common in most memory corruption
attacks. Analysis reports for the static and dynamic analysis of this code snippet are shown in
Figure 2(b) and 2(c), respectively.

� a = "";
� b = "{@xqhvfdsh+%(x<3<3%,>zk"+
� "loh+{1ohqjwk?4333,{.@{>";
� for (i = 0; i < b.length; i++) {
� c = b.charCodeAt(i) - 3;
� a += String.fromCharCode(c);
� }
� eval(a);

(a) Obfuscated JavaScript code

� ID = STR.00 ;
� ID = STR.02 +
� STR.02 ;
� FOR ( ID = NUM ; ID < ID . ID ; ID ++ ) {
� ID = ID . ID ( ID ) - NUM ;
� ID + = ID . ID ( ID ) ;
� }
� EVAL ( ID ) ;

(b) Static analysis: Report of lexical tokens

� SET global.a TO ""
� SET global.b TO "{@xqhvfdsh+%(x<3<3%,>zkloh+{1ohqjwk?4333,{.@{>"
� SET global.i TO "0"
� CALL charCodeAt
� SET global.c TO "120"
� CALL fromCharCode
� SET global.a TO "x"
...

��� SET global.a TO "x=unescape("%u9090");while(x.length<1000)x+=x;"
��� SET global.i TO "46"
��� CALL eval
��� CALL unescape
��� SET global.x TO "<90><90>"

...
��� SET global.x TO "<90><90> ... 1024 bytes ... <90><90>"

(c) Dynamic analysis: Behavior report

Figure ✓: Example of static and dynamic JavaScript analysis: (a) Obfuscated code snippet of
a NOP sled generation, (b) lexical tokens extracted using static analysis, (c) a behavior report
generated using dynamic analysis. .e deobfuscated code is visible in line 232.

Static analysis. Our static analysis relies on basic principles of compiler design [? ]: Before
the source code of a program can be interpreted or compiled, it needs to be decomposed into
lexical tokens, which are then fed to the actual parser. .e static analysis component in C⌥⇧⌃
takes advantage of this process and e/ciently extracts lexical tokens from the JavaScript code
of a web page using a customized Y⇤⌅⌅ grammar.
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Report of static analysis

string arithmetics

 Access to code patterns, e.g. loops, arithmetics, ...

loop and code 
evaluation
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Dynamic Program Analysis

• Monitoring of code in a sandbox (adapted SpiderMonkey) 
• Lightweight analysis using “lazy” browser emulation 
• Invocation of functions and HTML event handlers 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Report of dynamic analysis

Moreover, we recursively pre-load all external code referenced in the document, including
scripts, frames and iframes, to obtain the complete code base of the web page. All code blocks
of a requested document are then merged for further static and dynamic analysis.

As an example running the following sections, we consider the JavaScript code shown in
Figure 2(a)..e code is obfuscated using a simple substitution cipher and contains a routine for
constructing a NOP sled, an array of NOP instructions common in most memory corruption
attacks. Analysis reports for the static and dynamic analysis of this code snippet are shown in
Figure 2(b) and 2(c), respectively.

� a = "";
� b = "{@xqhvfdsh+%(x<3<3%,>zk"+
� "loh+{1ohqjwk?4333,{.@{>";
� for (i = 0; i < b.length; i++) {
� c = b.charCodeAt(i) - 3;
� a += String.fromCharCode(c);
� }
� eval(a);

(a) Obfuscated JavaScript code

� ID = STR.00 ;
� ID = STR.02 +
� STR.02 ;
� FOR ( ID = NUM ; ID < ID . ID ; ID ++ ) {
� ID = ID . ID ( ID ) - NUM ;
� ID + = ID . ID ( ID ) ;
� }
� EVAL ( ID ) ;

(b) Static analysis: Report of lexical tokens

� SET global.a TO ""
� SET global.b TO "{@xqhvfdsh+%(x<3<3%,>zkloh+{1ohqjwk?4333,{.@{>"
� SET global.i TO "0"
� CALL charCodeAt
� SET global.c TO "120"
� CALL fromCharCode
� SET global.a TO "x"
...

��� SET global.a TO "x=unescape("%u9090");while(x.length<1000)x+=x;"
��� SET global.i TO "46"
��� CALL eval
��� CALL unescape
��� SET global.x TO "<90><90>"

...
��� SET global.x TO "<90><90> ... 1024 bytes ... <90><90>"

(c) Dynamic analysis: Behavior report

Figure ✓: Example of static and dynamic JavaScript analysis: (a) Obfuscated code snippet of
a NOP sled generation, (b) lexical tokens extracted using static analysis, (c) a behavior report
generated using dynamic analysis. .e deobfuscated code is visible in line 232.

Static analysis. Our static analysis relies on basic principles of compiler design [? ]: Before
the source code of a program can be interpreted or compiled, it needs to be decomposed into
lexical tokens, which are then fed to the actual parser. .e static analysis component in C⌥⇧⌃
takes advantage of this process and e/ciently extracts lexical tokens from the JavaScript code
of a web page using a customized Y⇤⌅⌅ grammar.
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Feature Extraction

• Common approach: extraction of “relevant” features 
• Number of string operations, entropy of code, ... 
• Potentially insufficient for detection of novel attacks 

• Cujo approach: attack-independent extraction of features 
• Mapping to vector space using snippets of tokens 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Report

SET i TO “0” 
CALL charCodeAt 
SET c TO “120” 
CALL fromCharCode 
...

i TO “0”

S
E
T
 
i
 
T
O

VectorExtraction of 
snippets (n-grams)

i TO “0”

SET i TO

...
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Learning-based Detection

• Cujo implementation: Linear Support Vector Machine 
• Inference of attack patterns as separating hyperplane 
• Training on reports of attacks and benign code 
• Linear SVM (efficient but no support for kernels)  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Maximum-margin hyperplane 
(Robust against data and label noise)

Reports of benign JavaScript code

Reports of drive-by-download attacks
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Detection Performance

• Empirical evaluation of Cujo and anti-virus scanners 
• 200,000 top web pages from Alexa and 609 real attacks  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Cujo ClamAV AntiVir Wepawet Zozzle IceShield

98 %91 %100 %
70 %

35 %

94 %

0,002 % 0 % 0,087 % 0,013 % 0 % 2,179 %

Anti-virus scannersCujo

True-positive rate

False-positive rate

Other learning-based detectors

* taken from papers
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Summary
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Summary

• Learning-based intrusion detection 
• Expressive feature space crucial for detection 

• Anomaly detection  
• Attacks identified as deviations from normality 
• Pitfall in practice: anomalies not necessary attacks 

• Classification 
• Discrimination between malicious and benign activity 
• Pitfall in practice: known and future attacks not related
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Thank you! Questions?
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